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Abstract

Accurate estimation of surface energy fluxes from space at high spatial resolution has the potential to improve prediction of the impact of

land-use changes on the local environment and to provide a means to assess local crop conditions. To achieve this goal, a combination of

physically based surface flux models and high-quality remote-sensing data are needed. Data from the ASTER sensor are particularly well-

suited to the task, as it collects high spatial resolution (15–90 m) images in visible, near-infrared, and thermal infrared bands. Data in these

bands yield surface temperature, vegetation cover density, and land-use types, all critical inputs to surface energy balance models for

assessing local environmental conditions. ASTER is currently the only satellite sensor collecting multispectral thermal infrared images, a

capability allowing unprecedented surface temperature estimation accuracy for a variety of surface cover types. Availability of ASTER data

to study surface energy fluxes allows direct comparisons against ground measurements and facilitates detection of modeling limitations, both

possible because of ASTER’s higher spatial resolution.

Surface energy flux retrieval from ASTER is demonstrated using data collected over an experimental site in central Iowa, USA, in the

framework of the Soil Moisture Atmosphere Coupling Experiment (SMACEX). This experiment took place during the summer of 2002 in a

study of heterogeneous agricultural croplands. Two different flux estimation approaches, designed to account for the spatial variability, are

considered: the Two-Source Energy Balance model (TSEB) and the Surface Energy Balance Algorithm or Land model (SEBAL). ASTER

data are shown to have spatial and spectral resolution sufficient to derive surface variables required as inputs for physically based energy

balance modeling. Comparison of flux model results against each other and against ground based measurements was promising, with flux

values commonly agreeing within ¨50 W m�2. Both TSEB and SEBAL showed systematic agreement and responded to spatially varying

surface temperatures and vegetation densities. Direct comparison against ground Eddy Covariance data suggests that the TSEB approach is

helpful over sparsely vegetated terrain.
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1. Introduction

The Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) is a special remote-sensing

tool intended to help estimate the surface energy balance, a

critical attribute for monitoring land surface climate, hydro-

logical processes and vegetation health. Using ASTER

observations with spatial resolutions ranging from 15 to 90

m, in combination with a model simulating energy transfer,

detailed estimates of surface energy fluxes may potentially

be retrieved over large portions of the Earth’s landmass.

Knowledge of energy fluxes is important, providing

meteorological boundary conditions for convection within

the atmospheric boundary layer, and evapotranspiration

(ET) estimates for hydrological studies, including vegetation

transpiration estimates for crop growth assessment. The

required flux retrieval accuracy varies by application, but is

typically ¨50 W m�2, as suggested by Seguin et al. (1999).

The essential idea for energy flux estimation of ET is

recognition that water vapor mass transport can equivalently

be represented as energy transport. Due to the large amount

of heat represented by the evaporation process, water mass

transport can be accurately estimated from known energy

transport. Since energy transport of water vapor is directly

connected to thermal and water vapor gradients, one can

estimate ET primarily from knowledge of four quantities:

surface temperature, vegetation density, near surface air

temperature and near surface humidity. The first two are

readily estimated from remote sensing, while the last two

are obtainable from ground observations or possibly from

remote-sensing contextual data.

Estimation of land surface ET is of course not new, and

in recent years accurate point-based observations have been

used to monitor ET variability at hourly time scales.

Examples include experiments at Monsoon ’90 (Stannard

et al., 1994), FIFE (Kanemasu et al., 1992; Shuttleworth et

al., 1989), HAPEX-SAHEL (Goutorbe et al., 1994),

EFEDA (Pelgrum & Bastiaanssen, 1996), BOREAS (Sellers

et al., 1997), NOPEX (Halldin & Gryning, 1999), JORNEX

(Havstad et al., 2000) and ReSeDA (Olioso et al., 2002b).

However, it has also been recognized that spatial variability

of ET is large and that even the most advanced ways of

measuring ET with tower-mounted Eddy Covariance (E-C)

systems are often not representative of landscape-scale ET

(Pelgrum & Bastiaanssen, 1996; Stannard et al., 1994).

Consequently, incorporation of remote-sensing data is

required, since this is the only way to simultaneously

observe surface properties over large surface areas.

ET monitoring with remote sensing has yet to be proven

as a reliable, robust approach. Recent experiments show

promising results, with systematic agreement between

estimates from ground and aircraft measurements over

several test areas (Anderson et al., 1997; French et al.,

2003; Hasager et al., 2002; Jacob et al., 2002a; Kustas et al.,

1994, 1996; Moran et al., 1994; Norman et al., 1995, 2000;

Olioso et al., 2002a; Wassenaar et al., 2002; Zhan et al.,
1996). On the other hand, previous criticisms (e.g., Hall et

al., 1992) suggest that thermal infrared (TIR) satellite

observations, particularly, are not sufficiently accurate to

constrain flux models. Although such critiques have been

refuted (Bastiaanssen et al., 1998a,b; Kustas & Norman,

1999), further examples are clearly needed before remote

sensing can be used operationally for this purpose.

Accurate spatially distributed estimates of surface energy

fluxes require physically based energy flux models driven

by accurate remote-sensing observations. Such ideal mod-

els, which do not depend on empirical calibration, are

unrealizable since complete consideration of processes at

the local scale requires large amounts of unavailable

information. Some models (e.g., SiB2, Sellers et al., 1986)

estimate ET from the Penman–Monteith equation (Monteith

& Unsworth, 1990; Penman, 1948), which considers both

the radiative flux and the water mass flux, and can use

remote sensing to derive net radiation (Rn). This widely

used approach, however, does not adequately model

heterogeneous surfaces or water-stressed vegetation. Other

approaches, such as the simplified method of Jackson et al.

(1977), can model some of these conditions by incorporat-

ing surface temperatures observed from thermal remote

sensing, but do so in an empirical way, meaning that local

calibration is required.

Recent versions of remote-sensing energy flux models

have progressed to include treatment for a wide range of

conditions including heterogeneous surfaces and variable

meteorological constraints, thereby reducing problems

encountered previously. These newer models are similar in

some respects to predecessors such as Penman–Monteith

models, but represent an advance to the state of the art

because they incorporate higher spectral and spatial

resolution remote-sensing data across the visible, near-

infrared and thermal wave lengths. Five examples are: the

Two-Source Energy Balance model (TSEB, Norman et al.,

1995), DisAlexi (Norman et al., 2003), the Surface Energy

Balance Algorithm for Land model (SEBAL, Bastiaanssen

et al., 1998a), the Surface Energy Balance System (SEBS,

Su, 2002), and the NDVI/Temperature triangle method

(Gillies et al., 1997). Although these models rely upon

different assumptions and interpret remote-sensing data in

different ways, they have all been tested and verified under

local conditions. This means that any one of them ought to

return accurate surface flux estimates given accurate input

observations. However the question remains whether or not

these models are generally applicable and can do what

previous models could not, namely reliably estimate

spatially distributed surface energy fluxes.

One way to answer this question is to assemble multi-

spectral remote-sensing observations of high-quality and

high spatial resolution over various landscapes and to

compare model results with each other and with independ-

ently measured ground flux measurements. In this respect,

ASTER should be well-suited to the task since it can

accurately retrieve vegetation density, spectral reflectances
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over visible and near-infrared (VNIR) wave lengths (Jacob

et al., 2002b), and surface temperatures potentially accurate

to ¨0.5 -C (Hook & Prata, 2001). In recent work by Jacob

et al. (2004), land surface temperature retrieval agreement

between ASTER and MODIS sensors was ¨0.9 -C,
indicating consistent data quality.

In this paper we demonstrate estimation of surface

energy fluxes using ASTER data by examining first results

from a model intercomparison study based on observations

over a 2002 experimental study in Iowa, USA. The

approach is to first discuss basic observational requirements

for landscape-scale surface energy balance modeling and

how ASTER data meet those requirements. Next we briefly

describe implementations of the TSEB and SEBAL models.

Third, these flux models are compared with each other and

ground-level measurements.
2. Observational requirements

Regardless of spatial scale, estimation of surface energy

fluxes (Brutsaert, 1982; McNaughton & Spriggs, 1989) can

be represented by the balance of turbulent fluxes against

available energy:

H þ LE ¼ Rn � G ð1Þ

where H, sensible heat and LE, latent heat, are turbulence

terms, G is conducted soil heat and Rn is net radiation.

These terms, all in W m�2, respectively represent energy

conducted away from the surface and energy delivered to

the Earth’s surface. Neglected are storage and photosyn-

thesis terms. These latter two terms are usually thought

unimportant for short-term estimates over non-forested
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Fig. 1. ASTER NDVI over SMACEX site on 1 July 2002. NDVI values range

vegetation. E-C tower locations are indicated by white circles. Nested squares at up

ones are projected to UTM zone 15 coordinates. The white area at the left denot
areas. However, recent work by Meyers and Hollinger

(2004) suggests that storage in corn fields can be significant.

Spatial implementation of Eq. (1) requires an underlying

energy balance model and boundary condition constraints

from remote-sensing data observations. Terms in Eq. (1)

constrained by remote sensing depend upon spatial and

spectral resolutions. Using VNIR to TIR detectors, con-

straints on three of four terms are directly possible: H, Rn

and G. H is constrained by surface temperatures derived

from TIR data, while both Rn and G fluxes are constrained

by both VNIR reflectances and emitted TIR radiances. The

remaining component, LE can be constrained indirectly by

residuals.

The useful role of VNIR-TIR remote-sensing energy flux

modeling is therefore determined by a sensor’s ability to

accurately determine the three flux terms from observed

reflected and emitted radiances. Without sufficient accuracy,

errors from estimates of H, Rn and G accumulate in LE flux

estimates and could overwhelm results by 100s of W m�2

(Kustas & Norman, 1996).

For this paper we examine ASTER’s suitability by

evaluating results from an experimental site in central Iowa

known as the Soil Moisture Atmosphere Coupling Experi-

ment 2002 (SMACEX). The site consisted of intensive soil,

vegetation and meteorological observations over the Walnut

Creek Watershed, an area just south of Ames, Iowa, USA

(Kustas et al., 2004). Two observational factors we consider

are spatial and spectral resolution.

2.1. Spatial resolution

For surface energy balance modeling the chief require-

ment for spatial resolution is the ability to distinguish land
450 455 460 465
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cover types that have distinctly different heat flux properties

and resolve spatial variability of the considered processes

within a land-class type. Over agricultural regions, these

cover types include grazing lands, managed crops, riparian

zones, water bodies and fields of bare soil. Each of these

types differs significantly in surface roughness, potential

heat capacity, moisture content, and spectral reflectance.

Spatial variability of energy fluxes at local scales is strongly

controlled by soil and micrometeorological conditions.

ASTER images are potentially able to make these

distinctions over all three band groups, with 15-m resolution

for VNIR bands 1,2 and 3; 30-m resolution for SWIR bands

4–9; and 90-m resolution for TIR bands 10–14 (Yamaguchi

et al., 1998). Considering the context of currently available

images (e.g., Ikonos, Quickbird, TM7 and MODIS),

ASTER data may be considered high- to moderate-

resolution because they match TM7’s capabilities in visible

and near-infrared wave lengths and have a significantly

higher resolution than MODIS’ best resolution (250 m).
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Fig. 2. NDVI histograms of SMACEX at 15-, 90- and 240-m resolutions. Bimodal

of relatively sparse soybean fields and dense corn fields. The distribution becomes

coarser observational scale.
An example of ASTER’s spatial capability can be

demonstrated using SMACEX imagery from 1 July 2002.

Using 15-m NDVI images (Fig. 1), land-use patterns and

highways are clearly defined at the landscape scale. NDVI

was derived from Level 2 ASTER processing of band 2 and

3 N reflectances (Abrams, 2000).

In the Iowa example above, the adequacy of remote-

sensing resolution was determined qualitatively, where

imagery was checked against expected land cover patterns

at the section and quarter section levels. Knowing that

adequate resolution must be about half the distance of the

dominant land surface scale to avoid dominance of mixed

pixels (e.g., Woodcock & Strahler, 1987), minimal reso-

lution over SMACEX is ¨1/8 mile (400 m). A more

quantitative way to evaluate land surface scales and required

resolution is to generate histograms at successively coarser

resolutions and assess where the distributional pattern

changes. Using ASTER 15-m NDVI images, landscape

scale is identified from a series of histograms generated
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distributions for 15- and 90-m images reflect the known land cover patterns

uni-modal at 240-m resolution, meaning that most pixels are mixed at this
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from image reflectance aggregations. In the SMACEX

NDVI example (Fig. 2), source red and near-infrared

reflectance data were aggregated by spatial averaging to

90 m (ASTER TIR nominal resolution) and 240 m (close to

250 m, the best MODIS nominal resolution), then combined

to yield NDVI. Since NDVI is closely coupled to energy

balance model results, knowing the minimum resolution

needed to represent relatively homogeneous areas of

vegetation, rather than as clumped mixtures is important.

Histograms shown in Fig. 2 indicate that the minimum

required resolution is somewhere between 90- and 240-m

resolutions due to a significant distributional change. At 15-

to 90-m spatial resolutions, vegetation cover is bimodally

distributed. At 240-m resolution, the bimodal distribution is

mostly lost, meaning that distinctive sparse vegetation

values are mixed with dense vegetation ones.

A critical spatial issue for energy balance modeling is the

ability to distinguish land-use patterns in the TIR. Surface

temperature, rather than vegetation density, is the most

influential parameter for instantaneous energy fluxes.

ASTER surface temperature data collected over SMACEX

with a 90-m spatial resolution resolves dominant land-use

patterns discerned with VNIR data (Fig. 3). Surface temper-

atures, derived from the Temperature Emissivity Separation

(TES) algorithm (Gillespie et al., 1998) and atmospherically

corrected with radiosonde data and MODTRAN (Berk et al.,

1998), range between 25 and 40 -C for the 17:12UT

(12:12CDT) overpass time. Lower temperatures correspond

to thickly vegetated areas and warmer temperatures to

sparsely vegetated areas. As shown, patchwork patterns,

mainly representing corn and soybean fields, are readily

discerned, as are riparian zones to the east and urban areas to

the north. This means that physically representative energy
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Fig. 3. ASTER surface temperature over SMACEX site on 1 July 2002. Temperatu

field campaign E-C station locations.
flux modeling is feasible at this site at 90-m scales, and

potentially at 15-m scales by applying a thermal sharpening

technique described in Kustas et al. (2003).

2.2. Spectral resolution

In addition to requiring sufficient spatial resolution,

successful estimation of surface energy fluxes requires

sufficient spectral resolution to create vegetation density

and land surface temperature image estimates. The first

three ASTER bands (1, 2 and 3) sample green to near-

infrared wave lengths (0.52 to 0.86 Am) and are suitable for

NDVI and albedo images compatible with TM data. Though

some bandwidths are not as optimal as found elsewhere—

MODIS band 2 (0.84–0.88 Am) is narrower than ASTER’s

band 3 (0.76–0.86 Am), and hence less sensitive to

atmospheric water vapor content—the calibration levels

are excellent, with signal-to-noise ratios greater than 56 at

15-m spatial resolution [Earth Remote Sensing Data Center

(ERSDAC), 2001]. The next six bands (4–9) non-con-

tiguously sample short-wave infrared (SWIR) over 1.6–

2.43 Am. Though not used in this study, these SWIR bands

can be used to improve land cover characterization and

surface albedo estimates. Finally, five TIR bands (10–14)

sample wavelengths in two groups: one for 8.125–9.275

Am, an interval frequently diagnostic of high emissivity

contrast surfaces, and another for 10.25–11.65 Am, where

emissivity variations are commonly small (Fig. 4).

ASTER’s multispectral TIR imaging capability is its

most distinguishing characteristic and is important for

retrieving surface temperatures, potentially accurate to 0.5

-C. Reasons for this potential are its low NEDT (noise-

equivalent change in temperature, a measure of the signal-
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to-noise ratio for thermal detectors), <0.3 K, and its

multiband placement within the TIR window. Five TIR

bands allow better estimation of spectral variability of

surface brightness temperatures and surface emissivities

(Gillespie et al., 1998) than otherwise achievable with

single- and or split-window approaches.
3. Energy flux modeling

To show how ASTER can be used to model the surface

energy fluxes, we combine ASTER imagery over the

SMACEX site with implementations of two well-known

energy balance models, the Two-Source Energy Balance

approach (TSEB, Norman et al., 1995), and the Surface

Energy Balance Algorithm for Land approach (SEBAL,

Bastiaanssen et al., 1998a). By showing results from two

models, rather than one, model performance can be seen for

the same landscape, and allows identification of model

strengths and weaknesses.

3.1. TSEB

TSEB is a remote-sensing two-source approach based

upon land surface separability into two distinct, but linked

components: soil surfaces and vegetation canopies. By

combining remote observations of surface temperature,

vegetation data, land cover class, and near-surface mete-

orological data, surface resistance characteristics can be

modeled in a more physically meaningful way (Kustas &

Norman, 2000, 1999) than a more typical one-source

approach based on the kB�1 parameter (Garratt & Hicks,

1973). TSEB derives energy flux estimates from modeling

the land as a resistance network, between energy sources

from soil, vegetation, and the overlying atmosphere. Two

main variants of TSEB exist, one applicable strictly at local

scales (as described in Norman et al., 1995), while the other,

known as DisAlexi (Anderson et al., 1997; Mecikalski et al.,
1999) is also useful at regional scales since it also models

energy exchange at the atmospheric boundary layer. The

model outputs used here are from the DisAlexi implemen-

tation of TSEB, but we note that results from the local

implementation are similar due to the local scale of

SMACEX. Rn, computed from a multiple scattering model

(Goudriaan, 1977; Monteith & Unsworth, 1990) is parti-

tioned for each of the considered spectral ranges: visible,

near-infrared and TIR wave lengths (Norman et al., 1995).

This partitioning allows discrimination between energy

available at the soil surface and energy delivered to the

vegetation canopy. TSEB has three key assumptions:

turbulent fluxes are constant within the near surface layer

(Monin–Obukhov similarity is used for stability correction),

radiometric temperature can be repartitioned into soil and

vegetation components, and Priestley–Taylor transpiration

(Priestley & Taylor, 1972) applies for unstressed vegetation.

More complete details are described in Norman et al. (1995)

and in French et al. (2003).

3.2. SEBAL

The SEBAL model, in contrast to TSEB, is a one-source

modeling approach which does not discriminate soil and

vegetation components. This model is based upon the

estimation of surface energy fluxes with minimal ancillary

information by considering spatial variability within the

images themselves. This design principal has great practical

value since instantaneous evapotranspiration estimates can

potentially be retrieved worldwide without the need to

collect ground based data. SEBAL does this by contextual

separation of the land surface images into Fwet_ and Fdry_
areas. Distinction is achieved using the Fevaporative
controlled_ and Fradiative controlled_ branches of a surface

temperature-versus-albedo diagram. If other areas are

included within the images, the diagram commonly shows

a characteristic parabolic pattern. The vertex marks the

maximum observed radiometric temperature and separates

the lower albedo wet areas from the higher-albedo dry areas.

An aggregation scheme of the dry area properties is used

along with air temperature at an estimated blending height

in order to compute a regional layer aerodynamic resistance,

and then wind speed at a standard reference level (2 m).

Blending height is the height above the ground where the

influence of local-scale surface heterogeneity upon atmos-

pheric turbulence is relatively unimportant (e.g., Mahrt,

2000). Air temperature is assumed to be a linear function of

surface temperature. The slope and or set of this function are

derived considering both wet and dry areas. Over the driest

areas, LE flux is zero, allowing retrieval of H as a residual

of Rn�G. Over the wettest areas, H is negligible, with

surface temperature equal to near surface air temperature.

Key assumptions for SEBAL are the simultaneous presence

of wet and dry areas within the remote-sensing scene and

the ability to parameterize land surface resistance with a

factor called kB�1 (Garratt & Hicks, 1973). This factor is a
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means for obtaining thermal heat roughness from momen-

tum roughness. Further details of SEBAL can be found in

Bastiaanssen et al. (1998a), Su et al. (1999), and Jacob et al.

(2002a).
4. Intercomparison results at SMACEX 2002

Results from the ASTER-based model intercomparison

between TSEB and SEBALmodel estimates are summarized

as crossplot comparisons on a pixel-by-pixel basis (Fig. 5).

These plots help identify how model estimates relate to

each other by flux component and represent frequency

counts of the components Rn (upper left), G (upper right),

H (lower left) and LE (lower right). The plotted

distributions represent spatially comparative SEBAL vs.

TSEB fluxes for corn and soybean fields over an area

approximately 13�8 km over the Walnut Creek water-

shed. This subset corresponds to ¨13,000 ASTER pixels.

The pixel frequency counts in Fig. 5 were binned

according to range of observed fluxes with highest

occurrence frequencies coded dark gray.

In aggregate, Rn estimates by SEBAL and TSEB show

moderate systematic agreement (R2=0.68), but show a bias
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Fig. 5. Joint distribution of SEBAL and TSEB modeled fluxes over SMACEX by

right), H, sensible heat flux (lower left), and LE, latent heat flux (lower right) in
of 13 W m�2. For soil heat flux G, TSEB and SEBAL

calculations are strongly correlated (R2=0.95), moderate

bias of 11 W m�2, but have differing sensitivities. Where G

values are less than ¨100 W m�2, SEBAL and TSEB

values agree within standard error of mean values of 8 W

m�2, but with G greater than 100 W m�2, SEBAL

estimates are on the order of 50 W m�2 greater than TSEB

estimates. The relationships between turbulent fluxes H and

LE are similarly systematic, but with greater differences

between low flux values and high flux values. For H

estimates, the two models showed good correlation

(R2=0.80), and bias of 33 W m�2. However, SEBAL

model sensitivity was greater than that of TSEB, where the

crossplot slope is 1.46, yielding flux estimates differing by

over 100 W m�2. The LE comparison results complement

the H results, also with good correlation (R2=0.89), overall

bias of 8 W m�2, and greater SEBAL model sensitivity

(crossplot slope of 1.25).
5. Model validation results

To evaluate model flux estimates independently of each

other, comparisons with ground measured fluxes are needed.
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Using remote-sensing derived model fluxes and footprint

weighted ground based E-C measurements, flux compo-

nents are compared for 8 ground locations within the

SMACEX experimental area (Table 1, see locations in Fig.

3).The table is divided into four groups, one for each flux

component (H, LE, G and Rn). Within each group are 1/2

hourly averaged ground flux values (O) and TSEB (T) and

SEBAL (S) flux values. The leftmost column contains the

ground station identifier, appended by crop cover (C=corn,

S=soybean). The bottom row contains mean flux estimate

deviations from E-C measurements when considering all 8

stations. Ground observations for Rn are from tower-

mounted net radiometers. G values are from soil heat flux

plates. Preliminary turbulent fluxes, H and LE, are from E-C

flux observations, nominally 2 m above the ground in

soybean fields, and 4 m above the ground in corn fields

(Kustas et al., 2004). In rough terms, E-C measurements are

represented by no more than ¨4 ASTER pixels in the

upwind direction. Energy budgets at all stations were closed

by the Bowen ratio approach (Twine et al., 2000), then

adjusted for wind speed, wind direction and fetch effects

using a flux footprint model from Schuepp et al. (1990).

Comparisons of E-C footprint weighted turbulent fluxes

show both models sometimes produce very good agreement

over both corn and soybean land cover types, indicating that

integration of ASTER data with an energy flux model is

producing useful output. The range of observed conditions

spanned cover conditions from sparse (e.g., site 161,

soybeans) to thick (e.g., site 151, corn), with H values

ranging between 209 to 47 W m�2. Corresponding LE

values ranged between 253 and 463 W m�2. For this

example, TSEB results showed better agreement with

ground observations of H relative to SEBAL results, where

average TSEB deviations were small, 7 W m�2, while
Table 1

Eddy Covariance (E-C) measurements vs. TSEB and SEBAL model

estimates over 8 SMACEX sites

Stn H LE G Rn

O T S O T S O T S O T S

3S 150 179 318 277 323 206 105 112 82 637 615 606

6C 79 70 101 479 534 483 63 64 44 660 668 628

151C 77 88 127 463 520 468 66 64 46 657 672 641

152C 96 96 141 363 513 457 47 62 46 652 671 644

161S 209 174 311 253 336 215 92 117 83 642 626 609

23S 125 142 305 299 367 204 63 118 83 660 627 591

24C 47 71 126 401 532 453 47 63 45 642 666 624

33C 97 111 164 371 491 416 63 67 50 667 669 630

D̄ 7 89 89 �1 15 �8 0 �31

E-C measurements are half-hourly averages taken around ASTER overpass

time, 15:12 UTC, 1 July 2002. Model estimates are footprint weighted,

considering wind speed and wind direction at the E-C measurement height.

E-C site identifiers (Stn) and crop type (C: corn, S: soybean) are in the left-

most column, followed by column groups for each flux component:

sensible heat, H; latent heat, LE; soil heal, G; and net radiation, Rn. Within

each flux type are listed E-C measurements (O), TSEB estimates (T), and

SEBAL estimates (S). The final tabulated row (D̄ ) shows average

deviations between E-C values and modeled estimates.
SEBAL H deviations were moderate, 89 W m�2. When

considering LE estimates, SEBAL returned better results,

with an average deviation of 1 W m�2, in comparison with

TSEB’s average deviation of 89 W m�2.
6. Discussion

In light of the excellent retrieval capabilities of ASTER

and the reasonably good agreement between modeled

estimates over the SMACEX study site we can say that

ASTER is performing consistently. ASTER data provide

one of the few avenues to evaluate and test remote-sensing-

based surface energy flux models at higher resolutions.

Spatially varying surface temperatures closely correspond to

observed variations in vegetation densities and surface

fluxes. Spatial resolution of ASTER resolves physically

distinct land cover types that in the Iowa study have a

dominant length scale of 250 m. Without the 15- to 90-m

resolution capabilities, flux modeling would have neces-

sitated more empiricism, and therefore more calibration than

currently used in the TSEB and SEBAL models. Further-

more, without the higher-resolution images, model compar-

isons against ground observation sites would not be very

meaningful.

Energy flux model intercomparison shows functional

relationships exist between the SEBAL and TSEB, indicat-

ing both are responding similarly to ASTER temperature,

NDVI and albedo input data. However, in general terms,

SEBAL predicted fluxes are more sensitive to input changes

than are TSEB predicted fluxes. For example, over low H

regions, SEBAL and TSEB commonly agree within 20 W

m�2, but over high H regions, SEBAL predicts values up to

200 W m�2 greater than TSEB values. Spatial representa-

tion of this sensitivity difference is also strongly expressed

with LE estimates (Fig. 6). Distributional patterns are

similar for both models, but in the SEBAL case, estimated

LE areal values are much less than TSEB estimates.

General results from the tabular data shows cross-

comparison results seen previously. Agreement between

Rn ground observations, and model estimates from TSEB

and SEBAL are acceptable with mean deviations of 31 W

m�2 or less, indicating realistic model estimation of other

short- and long-wave radiation components. We note,

however, that poor agreement would have been surprising

because modeled estimates had the benefit of calibrated

spatial albedo data and measured incoming solar radiation.

Agreement between G observations and modeled estimates

was also good, with average deviation of 15 W m�2. This

good agreement indicates that fractional estimation of net

radiation based upon NDVI-derived fractional cover works

well for the SMACEX area at satellite overpass time.

Agreement for turbulent fluxes H and LE was more

problematic to assess. In some cases, (e.g., dense corn field

sites 6 and 151), SEBAL LE model results agreed very

closely with ground observations (<10 W m�2), while
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consistent with patterns seen in Figs. 1 and 2, but average ET flux estimates from SEBAL are commonly 1/2 to 1/3 of TSEB estimates. Displays are scaled

from 0 (black) to 600 W m�2 (white).

A.N. French et al. / Remote Sensing of Environment 99 (2005) 55–65 63
TSEB results showed differences on the order of 50 W m�2.

But in other cases (e.g., sparse soybean field sites 3 and 23),

TSEB model results were in much better agreement with E-

C observations. TSEB differences for H estimates were

typically within 35 W m�2 of E-C values, while SEBAL

estimates were highly discrepant (up to 150 W m�2).

Because these flux estimate discrepancies arise from

identical input data, their causes have to be explained by

TSEB/SEBAL model differences and assumptions. One

important model difference lies with model representation of

land and near surface air temperatures. In TSEB, H was

determined by the gradient between observed land surface

radiometric temperatures and an observed air temperature.

At SMACEX a constant near surface air temperature was

used with TSEB, meaning that modeled H values were

directly related to observed radiometric surface temper-

atures. Based on the 7 W m�2 average deviation between E-

C and TSEB H fluxes, this gradient estimation approach

seems accurate within E-C measurement error. By contrast,

the SEBAL model, returned comparatively less accurate H
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Fig. 7. Temperature vs. albedo distribution plot over SMACEX, 1 July 2002

showing mostly constant albedo values for temperatures between 30 and 40

-C. This distribution falls within the radiative controlled domain.
estimates, with an average deviation of 89 W m�2. SEBAL

does not use near surface air temperatures because of its

temperature normalization using wet and dry areas. Though

known to work well elsewhere, the application of this

approach did not work well at SMACEX due to an inability

to fully distinguish wet and dry areas. As noted previously,

SEBAL anticipates a parabolic relationship between surface

temperature and albedo, thus distinguishing evaporative and

radiative controlled domains. At SMACEX this parabolic

relationship did not exist (Fig. 7), despite known existence

of sparsely vegetated and riparian zones. This means

successful retrieval by SEBAL of meteorological and

resistance parameters is questionable because no distinction

between minimum and maximum temperatures within the

radiative and evaporative domains is possible for this 1 July

scene.

Current validation results at SMACEX suggest more

accurate flux estimation from TSEB than from SEBAL

(Table 1). As noted, typical H estimates from TSEB were

within 7 W m�2 of ground observations, while typical LE

estimates from TSEB deviated significantly less from

observations than did SEBAL estimates. Most of the

disagreements between TSEB and SEBAL estimates

occurred over sparsely vegetated sites, suggesting that the

soil–vegetation differentiation accommodated by TSEB is a

significant model benefit.

Nevertheless, some caution is required with these results

especially considering the preliminary nature of surface flux

observations. Issues such as energy budget closure and flux

footprint estimates need more thorough investigation. Such

investigation is underway, which will also consider flux

estimates from the SEBS and the NDVI/Temperature

triangle approaches.
7. Conclusions

Estimation of spatially distributed surface energy fluxes

over agricultural areas requires high-quality remote sensing,

a need mostly fulfilled by ASTER. With spatial resolution

capabilities ranging between 15 and 90 m, ASTER can

detect and discriminate variations in surface temperature,
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emissivity, vegetation densities and albedo corresponding to

distinct land-use types and thus reduce problems from

mixed pixels.

In this study we have combined consistent ASTER

observations with physically based surface energy flux

models to retrieve reasonable estimates of instantaneous

surface energy fluxes. Using model intercomparison results

showed systematic agreement between all flux components,

indicating that the two models tested, TSEB and SEBAL,

operate similarly when provided identical remote-sensing

inputs. These first results from the multi-model intercom-

parison study also showed significantly different model

sensitivities, indicating a need for further, in-depth analysis

of each of model. Such investigations are possible because

of multispectral, high spatial resolution over VNIR-TIR

bands observed by ASTER.
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